Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(5): e27569, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486747

RESUMEN

Gastric cancer (GC) is a malignant tumor with poor prognosis. Studies have shown that cysteine-rich secretory protein LCCL domain containing 1 (CRISPLD1) is associated with tumor progression. However, its role in GC is unclear. The present study aimed to determine the pathogenic mechanism of CRISPLD1 in GC. Analysis of public databases revealed high mRNA expression of CRISPLD1 in GC, which was associated with poor prognosis. Additionally, CRISPLD1 expression levels showed significant correlations with T stage, overall survival events, and stage. Knockdown of CRISPLD1 reduced cell proliferation, invasion, and migration. Furthermore, CRISPLD1 knockdown decreased intracellular calcium levels in GC cells and inhibited the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. Treatment with an AKT activator reversed the inhibitory effect of CRISPLD1 knockdown on GC cell migration and invasion. Our findings suggest that CRISPLD1 promotes tumor cell progression in GC by mediating intracellular calcium levels and activating the PI3K-AKT pathway, highlighting CRISPLD1 as a potential therapeutic target for GC.

2.
Urolithiasis ; 52(1): 50, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554174

RESUMEN

The purpose of this study was to evaluate the efficacy and safety of flexible ureteroscopy with holmium laser lithotripsy in the management of calyceal diverticular calculi. In this study, we retrospectively analyzed the clinical data of 27 patients with calyceal diverticular calculi admitted to the Department of Urology of the Zigong First People's Hospital from May 2018 to May 2021. Intraoperatively, the diverticular neck was found in all 27 patients, but flexible ureterorenoscopy lithotripsy was not performed in 2 cases because of the slender diverticular neck, and the success rate of the operation was 92.6%. Of the 25 patients with successful lithotripsy, the mean operative time was 76.9 ± 35.5 (43-200) min. There were no serious intraoperative complications such as ureteral perforation, mucosal avulsion, or hemorrhage. Postoperative minor complications (Clavien classification I-II) occurred in 4 (16%) patients. The mean hospital stay was 4.4 ± 1.7 (3-12) days. The stone-free rate was 80% at the 1-month postoperative follow-up. After the second-stage treatment, the stone-free rate was 88%. In 22 cases with complete stone clearance, no stone recurrence was observed at 5.3 ± 2.6 (3-12) months follow-up. This retrospective study demonstrated that flexible ureterorenoscopy with holmium laser is a safe and effective choice for the treatment of calyceal diverticular calculi, because it utilizes the natural lumen of the human body and has the advantages of less trauma, fewer complications, and a higher stone-free rate.


Asunto(s)
Divertículo , Cálculos Renales , Láseres de Estado Sólido , Litotripsia por Láser , Cálculos Ureterales , Humanos , Ureteroscopía/efectos adversos , Estudios Retrospectivos , Láseres de Estado Sólido/efectos adversos , Cálculos Renales/terapia , Ureteroscopios , Litotripsia por Láser/efectos adversos , Divertículo/cirugía , Divertículo/complicaciones , Complicaciones Posoperatorias , Cálculos Ureterales/complicaciones , Resultado del Tratamiento
3.
J Am Chem Soc ; 146(10): 7052-7062, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427585

RESUMEN

Functional DNAs are valuable molecular tools in chemical biology and analytical chemistry but suffer from low activities due to their limited chemical functionalities. Here, we present a chemoenzymatic method for site-specific installation of diverse functional groups on DNA, and showcase the application of this method to enhance the catalytic activity of a DNA catalyst. Through chemoenzymatic introduction of distinct chemical groups, such as hydroxyl, carboxyl, and benzyl, at specific positions, we achieve significant enhancements in the catalytic activity of the RNA-cleaving deoxyribozyme 10-23. A single carboxyl modification results in a 100-fold increase, while dual modifications (carboxyl and benzyl) yield an approximately 700-fold increase in activity when an RNA cleavage reaction is catalyzed on a DNA-RNA chimeric substrate. The resulting dually modified DNA catalyst, CaBn, exhibits a kobs of 3.76 min-1 in the presence of 1 mM Mg2+ and can be employed for fluorescent imaging of intracellular magnesium ions. Molecular dynamics simulations reveal the superior capability of CaBn to recruit magnesium ions to metal-ion-binding site 2 and adopt a catalytically competent conformation. Our work provides a broadly accessible strategy for DNA functionalization with diverse chemical modifications, and CaBn offers a highly active DNA catalyst with immense potential in chemistry and biotechnology.


Asunto(s)
ADN Catalítico , ARN Catalítico , Secuencia de Bases , Magnesio , ADN Catalítico/química , ADN , ARN/química , Iones , Conformación de Ácido Nucleico , Catálisis , ARN Catalítico/metabolismo
4.
Angew Chem Int Ed Engl ; 63(13): e202317334, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323479

RESUMEN

Xeno-nucleic acids (XNAs) are synthetic genetic polymers with improved biological stabilities and offer powerful molecular tools such as aptamers and catalysts. However, XNA application has been hindered by a very limited repertoire of tool enzymes, particularly those that enable de novo XNA synthesis. Here we report that terminal deoxynucleotide transferase (TdT) catalyzes untemplated threose nucleic acid (TNA) synthesis at the 3' terminus of DNA oligonucleotide, resulting in DNA-TNA chimera resistant to exonuclease digestion. Moreover, TdT-catalyzed TNA extension supports one-pot batch preparation of biostable chimeric oligonucleotides, which can be used directly as staple strands during self-assembly of DNA origami nanostructures (DONs). Such TNA-protected DONs show enhanced biological stability in the presence of exonuclease I, DNase I and fetal bovine serum. This work not only expands the available enzyme toolbox for XNA synthesis and manipulation, but also provides a promising approach to fabricate DONs with improved stability under the physiological condition.


Asunto(s)
Nanoestructuras , Naftalenosulfonatos , Ácidos Nucleicos , Tetrosas , Ácidos Nucleicos/química , Oligonucleótidos/química , ADN Polimerasa Dirigida por ADN , ADN Nucleotidilexotransferasa , Polímeros , ADN/química
5.
Theranostics ; 14(2): 662-680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169511

RESUMEN

Rationale: Cancer local recurrence increases the mortality of patients, and might be caused by field cancerization, a pre-malignant alteration of normal epithelial cells. It has been suggested that cancer-derived small extracellular vesicles (CDEs) may contribute to field cancerization, but the underlying mechanisms remain poorly understood. In this study, we aim to identify the key regulatory factors within recipient cells under the instigation of CDEs. Methods: In vitro experiments were performed to demonstrate that CDEs promote the expression of CREPT in normal epithelial cells. TMT-based quantitative mass spectrometry was employed to investigate the proteomic differences between normal cells and tumor cells. Loss-of-function approaches by CRISPR-Cas9 system were used to assess the role of CREPT in CDEs-induced field cancerization. RNA-seq was performed to explore the genes regulated by CREPT during field cancerization. Results: CDEs promote field cancerization by inducing the expression of CREPT in non-malignant epithelial cells through activating the ERK signaling pathway. Intriguingly, CDEs failed to induce field cancerization when CREPT was deleted, highlighting the importance of CREPT. Transcriptomic analyses revealed that CDEs elicited inflammatory responses, primarily through activation of the TNF signaling pathway. CREPT, in turn, regulates the transduction of downstream signals of TNF by modulating the expression of TNFR2 and PI3K, thereby promoting inflammation-to-cancer transition. Conclusion: CREPT not only serves as a biomarker for field cancerization, but also emerges as a target for preventing the cancer local recurrence.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Línea Celular Tumoral , Proteómica , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/genética , Proteínas de Neoplasias/genética , Vesículas Extracelulares/metabolismo , Neoplasias/genética
6.
Bioorg Chem ; 143: 107049, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150936

RESUMEN

Nucleic acids serve a dual role as both genetic materials in living organisms and versatile molecular tools for various applications. Threose nuclei acid (TNA) stands out as a synthetic genetic polymer, holding potential as a primitive genetic material and as a contemporary molecular tool. In this review, we aim to provide an extensive overview of TNA research progress in these two key aspects. We begin with a retrospect of the initial discovery of TNA, followed by an in-depth look at the structural features of TNA duplex and experimental assessment of TNA as a possible RNA progenitor during early evolution of life on Earth. In the subsequent section, we delve into the recent development of TNA molecular tools such as aptamers, catalysts and antisense oligonucleotides. We emphasize the practical application of functional TNA molecules in the realms of targeted protein degradation and selective gene silencing. Our review culminates with a discussion of future research directions and the technical challenges that remain to be addressed in the field of TNA research.


Asunto(s)
Ácidos Nucleicos , Ácidos Nucleicos/química , Oligonucleótidos/química , Tetrosas/química , ARN/química
7.
Adv Mater ; : e2306570, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649139

RESUMEN

Additive manufacturing (AM), which is a process of building objects in a layer-upon-layer fashion from designed models, has received unprecedented attention from research and industry because it offers outstanding merits of flexibility, customization, reduced buy-to-fly ratio, and cost-effectiveness. However, the fatigue performance of safety-critical industrial components fabricated by AM is still far below that obtained from conventional methods. This review discusses the microstructural heterogeneities, randomly dispersed defects, poor surface quality, and complex residual stress generated during the AM process that can negatively impact the fatigue performance of as-printed parts. The difference in microstructural origin of fatigue failure between conventionally manufactured and printed metals is reviewed with particular attention to the effects of the trans-scale microstructures on AM fatigue failure mechanisms. Various methods for mitigating the fatigue issue, including pre-process, inter-process, and post-process treatments, are illustrated. Empirical, semi-empirical, and microstructure-sensitive models are presented to predict fatigue strength and lifetime. Summary and outlooks for future development of the fatigue performance of AM materials are provided.

8.
J Ocul Pharmacol Ther ; 39(7): 456-462, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37311153

RESUMEN

Purpose: Brimonidine is a highly alpha-2 adrenergic agonist, which provides a potential myopia control effect. This study aimed to examine the pharmacokinetics and concentration of brimonidine in the posterior segment tissue of eyes in guinea pigs. Methods: A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was successfully used for brimonidine pharmacokinetics and tissue distribution research in guinea pigs following intravitreal administration (20 µg/eye). Results: Brimonidine concentrations in the retina and sclera were maintained at a high level (>60 ng/g) at 96 h postdosing. Brimonidine concentration peaked in the retina (377.86 ng/g) at 2.41 h and sclera (306.18 ng/g) at 6.98 h. The area under curve (AUC0-∞) was 27,179.99 ng h/g in the retina and 39,529.03 ng h/g in the sclera. The elimination half-life (T1/2e) was 62.43 h in the retina and 67.94 h in the sclera. Conclusions: The results indicated that brimonidine was rapidly absorbed and diffused to the retina and sclera. Meanwhile, it maintained higher posterior tissue concentrations, which can effectively activate the alpha-2 adrenergic receptor. This may provide pharmacokinetic evidence for the inhibition of myopia progression by brimonidine in animal experiments.


Asunto(s)
Miopía , Cuerpo Vítreo , Cobayas , Animales , Tartrato de Brimonidina , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos
9.
J Am Chem Soc ; 145(16): 9334-9342, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37068218

RESUMEN

Triple-negative breast cancer (TNBC) is highly aggressive with a poor clinical prognosis and no targeted therapy. The c-Myc protein is a master transcription factor and a potential therapeutic target for TNBC. In this study, we develop a PROTAC (PROteolysis TArgeting Chimera) based on TNA (threose nucleic acid) and DNA that effectively targets and degrades c-Myc. The TNA aptamer is selected in vitro to bind the c-Myc/Max heterodimer and appended to the E-box DNA sequence to create a high-affinity, biologically stable bivalent binder. The TNA-E box-pomalidomide (TEP) conjugate specifically degrades endogenous c-Myc/Max, inhibits TNBC cell proliferation, and sensitizes TNBC cells to the cyclin-dependent kinase inhibitor palbociclib in vitro. In a mouse TNBC model, combination therapy with TEP and palbociclib potently suppresses tumor growth. This study offers a promising nucleic acid-based PROTAC modality for both chemical biology studies and therapeutic interventions of TNBC.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Factores de Transcripción , Neoplasias de la Mama Triple Negativas/patología , Genes myc
10.
Chembiochem ; 24(4): e202200651, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36513605

RESUMEN

Catalytic DNA-based fluorescent sensors have enabled cellular imaging of metal ions such as Mg2+ . However, natural DNA is prone to nuclease-mediated degradation. Here, we report the in vitro selection of threose nucleic acid enzymes (TNAzymes) with RNA endonuclease activities. One such TNAzyme, T17-22, catalyzes a site-specific RNA cleavage reaction with a kcat of 0.017 min-1 and KM of 675 nM. A fluorescent sensor based on T17-22 responds to an increasing concentration of Mg2+ with a limit of detection at 0.35 mM. This TNAzyme-based sensor also allows cellular imaging of Mg2+ . This work presents the first proof-of-concept demonstration of using a TNA catalyst in cellular metal ion imaging.


Asunto(s)
ADN Catalítico , ARN , ADN/metabolismo , Metales , Iones
11.
RSC Chem Biol ; 3(10): 1276-1281, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36320890

RESUMEN

Enzymatic protein ligation has become the most powerful and widely used method for high-precision atomic force microscopy single-molecule force spectroscopy (AFM-SMFS) study of protein mechanics. However, this methodology typically requires the functionalization of the glass surface with a corresponding peptide sequence/tag for enzymatic recognition and multiple steps are needed. Thus, it is time-consuming and a high level of experience is needed for reliable results. To solve this problem, we simplified the procedure using two strategies both based on asparaginyl endopeptidase (AEP). First, we designed a heterobifunctional peptide-based crosslinker, GL-peptide-propargylglycine, which links to an N 3-functionalized surface via the click reaction. Then, the target protein with a C-terminal NGL sequence can be immobilized via the AEP-mediated ligation. Furthermore, we took advantage of the direct ligation between primary amino in a small molecule and protein with C-terminal NGL by AEP. Thus, the target protein can be immobilized on an amino-functionalized surface via AEP in one step. Both approaches were successfully applied to the AFM-SMFS study of eGFP, showing consistent single-molecule results.

12.
ACS Synth Biol ; 11(11): 3874-3885, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36278399

RESUMEN

Threose nucleic acid (TNA) is considered a potential RNA progenitor due to its chemical simplicity, base pairing property, and capability of folding into a functional tertiary structure. However, it is unknown whether the functional property can be maintained during transition from TNA to RNA. Here, we use a toggle in vitro selection to identify nucleic acid catalyst sequences that are active in both TNA and RNA backbones. One such nucleic acid enzyme with exchangeable backbone (CAMELEON) catalyzes an RNA cleavage reaction when prepared as TNA (T) and RNA (R). Further biochemical characterization reveals that CAMELEON R and T exhibit different catalytic behaviors such as rate enhancement and magnesium dependence. Structural probing and mutagenesis experiments suggest that they likely fold into distinct tertiary structures. This work demonstrates that the catalytic activity can be preserved during backbone transition from TNA to RNA and provides further experimental support for TNA as an RNA precursor in evolution.


Asunto(s)
Ácidos Nucleicos , ARN Catalítico , Ácidos Nucleicos/química , ARN/genética , ARN/química , Tetrosas/química , Emparejamiento Base , Conformación de Ácido Nucleico , ARN Catalítico/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-36078207

RESUMEN

PURPOSE: We investigated ocular accommodative responses and pupil diameters under different light intensities in order to explore whether changes in light intensity aid effective accommodation function training. METHODS: A total of 29 emmetropic and myopic subjects (age range: 12-18 years) viewed a target in dynamic ambient light (luminance: 5, 100, 200, 500, 1000, 2000 and 3000 lux) and static ambient light (luminance: 1000 lux) at a 40 cm distance with refractive correction. Accommodation and pupil diameter were recorded using an open-field infrared autorefractor and an ultrasound biological microscope, respectively. RESULTS: The changes in the amplitude of accommodative response and pupil diameter under dynamic lighting were 1.01 ± 0.53 D and 2.80 ± 0.75 mm, respectively, whereas in static lighting, those values were 0.43 ± 0.24 D and 0.77 ± 0.27 mm, respectively. The amplitude of accommodation and pupil diameter change in dynamic lighting (t = 6.097, p < 0.001) was significantly larger than that under static lighting (t = 16.115, p < 0.001).The effects of light level on both accommodation and pupil diameter were significant (p < 0.001). CONCLUSION: Accommodation was positively correlated with light intensity. The difference was about 1.0 D in the range of 0-3000 lux, which may lay the foundation for accommodative training through light intervention.


Asunto(s)
Acomodación Ocular , Iluminación , Adolescente , Niño , Humanos , Pupila/fisiología , Refracción Ocular , Pruebas de Visión
14.
Artículo en Inglés | MEDLINE | ID: mdl-35742313

RESUMEN

Near work has been considered to be a potential risk factor for the onset of myopia, but with inadequate evidence. Chinese adolescents use digital devices for near work, such as study and entertainment purposes, especially during the COVID-19 pandemic. In this study, we investigated the influence of prolonged periods of near work on accommodative response, accommodative microfluctuations (AMFs), and pupil diameter between juvenile subjects of myopia and emmetropia. Sixty juveniles (30 myopes and 30 emmetropes) were recruited for the study. Participants were instructed to play a video game on a tablet PC at a distance of 33.3 cm for 40 min. Accommodative response and pupil diameter were measured with an open-field infrared refractometer in High-speed mode. Parameters of the subjects were measured once every 10 min, and analyzed by one-way repeated measure ANOVA for variation tendency. There were no significant differences between emmetropia and myopia groups with respect to age and sex (p > 0.05). The low-frequency component (LFC) of myopia gradually increased with time, reached a peak at 30 min, and then declined (p = 0.043). The high-frequency component (HFC) of myopia also reached a peak at 30 min (p = 0.036). Nevertheless, there was no significant difference in the LFC (p = 0.171) or HFC (p = 0.278) of the emmetropia group at each time point. There was no significant difference in the mean and standard deviation of the accommodative response and pupil diameter both in emmetropic and myopic juveniles. Compared with juvenile emmetropes, myopes exhibit an unstable tendency in their accommodation system for prolonged near work at a certain time point. Accommodative microfluctuations may be a sensitive, objective indicator of fatigue under sustained near work in juvenile myopes.


Asunto(s)
COVID-19 , Miopía , Acomodación Ocular , Adolescente , COVID-19/epidemiología , Emetropía , Humanos , Pandemias
15.
Chem Commun (Camb) ; 58(55): 7698-7701, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35726591

RESUMEN

We report DNA-catalysed alternative RNA splicing in vitro. Using modular DNA catalysts with RNA endonuclease and RNA ligase activities, we show that DNA can modulate RNA structure and activity. Furthermore, we illustrate that such DNA-catalysed reactions can yield, from a common precursor, different splicing isoforms with distinct functions.


Asunto(s)
Empalme Alternativo , Empalme del ARN , ADN/genética , Isoformas de Proteínas , ARN
16.
J Diabetes Res ; 2022: 1193760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493608

RESUMEN

Background: Pathological neovascularization, which involves a disruption in the balance between angiogenic and antiangiogenic factors under pathological conditions, is the basis of many intraocular diseases. Pigment epithelium-derived factor (PEDF) is a potent natural, endogenous inhibitor of neovascularization because of its antiangiogenic and neuroprotective benefits. However, its application is restricted by its instability and short half-life. The present study is aimed at investigating the cytotoxicity and antiangiogenic effects of PEDF-loaded PEGylated nanoparticles (NP-PEG-PEDF) on high glucose-stimulated human umbilical vein endothelial cells (HUVECs). Methods: In this study, NP-PEG-PEDF were fabricated using the multiple emulsion method for the first time. HUVECs were cultured in a high concentration of glucose (30 mmol/L D-glucose), simulating diabetic conditions. The antiangiogenic effects of vascular endothelial growth factor (VEGF), pure PEDF, and NP-PEG-PEDF on proliferation, migration, and tube formation were evaluated. VEGF secretion in high glucose-stimulated HUVECs was further tested in vitro. Results: NP-PEG-PEDF exhibited low cytotoxicity in HUVECs. Our results indicated that in vitro, NP-PEG-PEDF attenuated diabetes-induced HUVEC proliferation, migration, and tube formation and suppressed VEGF secretion. The apoptosis of diabetes-induced HUVECs occurred in a dose-dependent manner, which showed a statistically significant difference compared with the PEDF treatment group. Conclusion: Our study is the first to demonstrate that NP-PEG-PEDF exert antiangiogenic effects on high glucose-stimulated HUVECs and have the potential to alleviate microvascular dysfunction. These data suggest that the NP-PEG-PEDF delivery system may offer an innovative therapeutic strategy for preventing neovascularization of the fundus.


Asunto(s)
Nanopartículas , Factor A de Crecimiento Endotelial Vascular , Inhibidores de la Angiogénesis/farmacología , Proteínas del Ojo , Glucosa/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Patológica/metabolismo , Factores de Crecimiento Nervioso , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacología , Serpinas , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Am J Hematol ; 97(8): 992-1004, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491511

RESUMEN

We developed a T-cell-receptor (TCR) complex-based chimeric antigen receptor (CAR) named Synthetic TCR and Antigen Receptor (STAR). Here, we report pre-clinical and phase I clinical trial data (NCT03953599) of this T-cell therapy for refractory and relapsed (R/R) B-cell acute lymphoblastic leukemia (B-ALL) patients. STAR consists of two protein modules each containing an antibody light or heavy chain variable region and TCR α or ß chain constant region fused to the co-stimulatory domain of OX40. T-cells were transduced with a STAR-OX40 lentiviral vector. A leukemia xenograft mouse model was used to assess the STAR/STAR-OX40 T cell antitumor activity. Eighteen patients with R/R B-ALL were enrolled into the clinical trial. In a xenograft mouse model, STAR-T-cells exhibited superior tumor-specific cytotoxicity compared with conventional CAR-T cells. Incorporating OX40 into STAR further improved the proliferation and persistence of tumor-targeting T-cells. In our clinical trial, 100% of patients achieved complete remission 4 weeks post-STAR-OX40 T-cell infusion and 16/18 (88.9%) patients pursued consolidative allogeneic hematopoietic stem cell transplantation (allo-HSCT). Twelve of 16 patients (75%) remained leukemia-free after a median follow-up of 545 (433-665) days. The two patients without consolidative allo-HSCT relapsed on Day 58 and Day 186. Mild cytokine release syndrome occurred in 10/18 (55.6%) patients, and 2 patients experienced grade III neurotoxicity. Our preclinical studies demonstrate super anti-tumor potency of STAR-OX40 T-cells compared with conventional CAR-T cells. The first-in-human clinical trial shows that STAR-OX40 T-cells are tolerable and an effective therapeutic platform for treating R/R B-ALL.


Asunto(s)
Linfoma de Burkitt , Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Enfermedad Aguda , Animales , Antígenos CD19 , Humanos , Inmunoterapia Adoptiva , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Linfocitos T
18.
J Ophthalmol ; 2022: 9774448, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35340275

RESUMEN

Purpose: The purpose of this study was to evaluate the long-term prognosis of small-incision femtosecond laser-assisted intracorneal concave lenticule implantation (SFII) in correction of human keratoconus. Methods: This was a prospective study for 11 patients who received SFII after being diagnosed as progressive keratoconus based on the Amsler-Krumeich classification system. Clinical assessment was performed for all the patients prior to and postsurgically at different time points for 5 years. These included uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), biomechanically corrected intraocular pressure (bIOP), corneal topography, anterior segment optical coherence tomography (AS-OCT), confocal microscopy, and biomechanical assessment with Corvis ST. Results: Comparison of preoperative and 60-month postoperative UDVA and CDVA (P 60months=0.081 and 0.001, respectively), all eyes showed an improvement in CDVA. Corneal topography showed no significant changes in corneal anterior K1, K2, posterior K1, K2, posterior elevation, or corneal densitometry compared with preoperative levels (P > 0.05). Corvis ST showed that central corneal thickness (CCT) and stiffness at applanation 1 (SP-A1) were significantly greater 1 week postsurgically when compared to the baseline (P < 0.05) and remained stable thereafter. The lenticule under the AS-OCT remained transparent throughout the entire postsurgical period. Under confocal microscopy, corneal edema and an increase in cell activation and reflectivity were observed at the lenticule-stromal interface within 1 week postoperatively. These reactions gradually subsided with time within 6 months. Conclusion: SFII is an effective procedure to prevent the progression of keratoconus due to its minimal invasiveness and capability of maintaining a steady biometry of the cornea.

19.
Cancer Res ; 82(6): 1128-1139, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35064018

RESUMEN

Bladder cancer is common worldwide, with most patients presenting with nonmuscle invasive disease. Multiple intravesical recurrences lead to reduced quality of life and high costs for patients with this form of bladder cancer. Intravesical chemotherapy aimed at reducing recurrence is the standard-of-care but has significant side effects from nonspecific cytotoxicity to normal urothelium. Importantly, toxicity limits doses that can be administered. Thus, tumor-specific drug targeting could reduce toxicity and enhance effectiveness by allowing higher doses. Here, using cell internalization systematic evolution of ligands by exponential enrichment (SELEX), we identify a novel bladder cancer-specific, chemically modified nucleic acid aptamer that can be preferentially internalized into tumor cells but not normal urothelial cells. The 35-nucleotide B1 aptamer is internalized into bladder cancer cells through clathrin-mediated endocytosis and macropinocytosis. As proof of principle, a B1-guided DNA nanotrain delivery vehicle for epirubicin was constructed as a targeted intravesical chemotherapy. The B1-nanotrain-epirubicin construct exhibited selective cytotoxicity towards bladder cancer cells and outperformed epirubicin in murine orthotopic xenograft models of human bladder cancer. This aptamer-based delivery system makes targeted chemotherapy possible for bladder cancer, providing a compelling rationale for clinical development. SIGNIFICANCE: These findings identify a bladder cancer-specific aptamer that can be used for targeted delivery of chemotherapy, potentially reducing toxicity and enhancing therapeutic efficacy.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Administración Intravesical , Animales , Epirrubicina/uso terapéutico , Humanos , Ratones , Calidad de Vida , Neoplasias de la Vejiga Urinaria/patología , Urotelio/patología
20.
Nat Chem ; 14(3): 350-359, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34916596

RESUMEN

Threose nucleic acid has been considered a potential evolutionary progenitor of RNA because of its chemical simplicity, base pairing properties and capacity for higher-order functions such as folding and specific ligand binding. Here we report the in vitro selection of RNA-cleaving threose nucleic acid enzymes. One such enzyme, Tz1, catalyses a site-specific RNA-cleavage reaction with an observed pseudo first-order rate constant (kobs) of 0.016 min-1. The catalytic activity of Tz1 is maximal at 8 mM Mg2+ and remains relatively constant from pH 5.3 to 9.0. Tz1 preferentially cleaves a mutant epidermal growth factor receptor RNA substrate with a single point substitution, while leaving the wild-type intact. We demonstrate that Tz1 mediates selective gene silencing of the mutant epidermal growth factor receptor in eukaryotic cells. The identification of catalytic threose nucleic acids provides further experimental support for threose nucleic acid as an ancestral genetic and functional material. The demonstration of Tz1 mediating selective knockdown of intracellular RNA suggests that functional threose nucleic acids could be developed for future biomedical applications.


Asunto(s)
Ácidos Nucleicos , Receptores ErbB/metabolismo , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Mutación Puntual , ARN/química , Tetrosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...